Please wait a minute...
Brain Science Advances  2019, Vol. 5 Issue (4): 274-287    doi: 10.26599/BSA.2019.9050024
Review Article     
A review on the ongoing quest for a pain signature in the human brain
Qian Su1, Yingchao Song2, Rui Zhao3, Meng Liang2
1Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
2School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300070, China
3Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
Download: PDF (856 KB)      HTML
Export: BibTeX | EndNote (RIS)      


Developing an objective biomarker for pain assessment is crucial for understanding neural coding mechanisms of pain in the human brain as well as for effective treatment of pain disorders. Neuroimaging techniques have been proven to be powerful tools in the ongoing quest for a pain signature in the human brain. Although there is still a long way to go before achieving a truly successful pain signature based on neuroimaging techniques, important progresses have been made through great efforts in the last two decades by the Pain Society. Here, we focus on neural responses to transient painful stimuli in healthy people, and review the relevant studies on the identification of a neuroimaging signature for pain.

Key wordspain signature      neuroimaging      machine learning      saliency      MVPA      specificity     
Received: 02 November 2019      Published: 16 March 2020
Corresponding Authors: Meng Liang   
About author:

§These authors contributed equally to this work.

Cite this article:

Qian Su, Yingchao Song, Rui Zhao, Meng Liang. A review on the ongoing quest for a pain signature in the human brain. Brain Science Advances, 2019, 5(4): 274-287.

URL:     OR

[1]   Williams AC, Craig KD. Updating the definition of pain. Pain. 2016, 157(11): 2420-2423.
[2]   Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007, 55(3): 377-391.
[3]   Tracey I, Woolf CJ, Andrews NA. Composite pain biomarker signatures for objective assessment and effective treatment. Neuron. 2019, 101(5): 783-800.
[4]   Reddan MC, Wager TD. Modeling pain using fMRI: from regions to biomarkers. Neurosci Bull. 2018, 34(1): 208-215.
[5]   Woolf CJ, Ma QF. Nociceptors—noxious stimulus detectors. Neuron. 2007, 55(3): 353-364.
[6]   Mifsud M, Spiteri M, Camilleri K, et al. The orthopedic manifestations of congenital insensitivity to pain: a population-based study. Indian J Orthop. 2019, 53(5): 665-673.
[7]   Goldberg YP, MacFarlane J, MacDonald ML, et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. 2007, 71(4): 311-319.
[8]   Staud R, Price DD, Janicke D, et al. Two novel mutations of SCN9A (Nav1.7) are associated with partial congenital insensitivity to pain. Eur J Pain. 2011, 15(3): 223-230.
[9]   Cruccu G, Anand P, Attal N, et al. EFNS guidelines on neuropathic pain assessment. Eur J Neurol. 2004, 11(3): 153-162.
[10]   Haanp?? M, Attal N, Backonja M, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011, 152(1): 14-27.
[11]   Kumbhare DA, Elzibak AH, Noseworthy MD. Evaluation of chronic pain using magnetic resonance (MR) neuroimaging approaches: what the clinician needs to know. Clin J Pain. 2017, 33(4): 281-290.
[12]   Mouraux A, Iannetti GD. The search for pain biomarkers in the human brain. Brain. 2018, 141(12): 3290-3307.
[13]   Levy N, Sturgess J, Mills P. "Pain as the fifth vital sign" and dependence on the "numerical pain scale" is being abandoned in the US: Why? Br J Anaesth. 2018, 120(3): 435-438.
[14]   Smith SM, Dworkin RH, Turk DC, et al. The potential role of sensory testing, skin biopsy, and functional brain imaging as biomarkers in chronic pain clinical trials: IMMPACT considerations. J Pain. 2017, 18(7): 757-777.
[15]   Gasparotti R, Padua L, Briani C, et al. New technologies for the assessment of neuropathies. Nat Rev Neurol. 2017, 13(4): 203-216.
[16]   Davis KD, Flor H, Greely HT, et al. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol. 2017, 13(10): 624-638.
[17]   Kunz M, Scharmann S, Hemmeter U, et al. The facial expression of pain in patients with dementia. Pain. 2007, 133(1/2/3): 221-228.
[18]   Huang G, Xiao P, Hung YS, et al. A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. Neuroimage. 2013, 81: 283- 293.
[19]   Davis KD. Neuroimaging of pain: what does it tell us? Curr Opin Support Palliat Care. 2011, 5(2): 116-121.
[20]   Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. 2015, 38(2): 86-95.
[21]   Moayedi M, Salomons TV, Atlas LY. Pain neuroimaging in humans: a primer for beginners and non-imagers. J Pain. 2018, 19(9): 961.e1-961961.e21.
[22]   Tracey I. Neuroimaging mechanisms in pain: from discovery to translation. Pain. 2017, 158(): S115-S122.
[23]   Tracey I. Can neuroimaging studies identify pain endophenotypes in humans? Nat Rev Neurol. 2011, 7(3): 173-181.
[24]   Garcia-Larrea L, Bastuji H. Pain and consciousness. Prog Neuropsychopharmacol Biol Psychiatry. 2018, 87(Pt B): 193-199.
[25]   May A. Neuroimaging: visualising the brain in pain. Neurol Sci. 2007, 28(): S101-S107.
[26]   Ploner M, Gross J, Timmermann L, et al. Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A. 2002, 99(19): 12444-12448.
[27]   Bornh?vd K, Quante M, Glauche V, et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain. 2002, 125(Pt 6): 1326-1336.
[28]   Büchel C, Bornhovd K, Quante M, et al. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci. 2002, 22(3): 970-976.
[29]   Petrovic P, Petersson KM, Hansson P, et al. Brainstem involvement in the initial response to pain. Neuroimage. 2004, 22(2): 995-1005.
[30]   Apkarian AV, Bushnell MC, Treede RD, et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005, 9(4): 463-484.
[31]   Avenanti A, Bueti D, Galati G, et al. Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nat Neurosci. 2005, 8(7): 955-960.
[32]   Boly M, Faymonville ME, Schnakers C, et al. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 2008, 7(11): 1013-1020.
[33]   Ingvar M. Pain and functional imaging. Philos Trans R Soc Lond, B, Biol Sci. 1999, 354(1387): 1347-1358.
[34]   Jones A. The pain matrix and neuropathic pain. Brain. 1998, 121(Pt 5): 783-784.
[35]   Ploghaus A, Tracey I, Gati JS, et al. Dissociating pain from its anticipation in the human brain. Science. 1999, 284(5422): 1979-1981.
[36]   Stern J, Jeanmonod D, Sarnthein J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage. 2006, 31(2): 721-731.
[37]   Talbot JD, Marrett S, Evans AC, et al. Multiple representations of pain in human cerebral cortex. Science. 1991, 251(4999): 1355-1358.
[38]   Whyte J. Clinical implications of the integrity of the pain matrix. Lancet Neurol. 2008, 7(11): 979-980.
[39]   Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013, 154(): S29-S43.
[40]   Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat. 2005, 207(1): 19-33.
[41]   Melzack R. From the gate to the neuromatrix. Pain. 1999, 82(): S121-S126.
[42]   Albe-Fessard D, Berkley KJ, Kruger L, et al. Diencephalic mechanisms of pain sensation. Brain Res. 1985, 356(3): 217-296.
[43]   Carmon A, Mor J, Goldberg J. Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res. 1976, 25(1): 103-107.
[44]   Cruccu G, Pennisi E, Truini A, et al. Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain. 2003, 126(Pt 10): 2246-2256.
[45]   Iannetti GD, Truini A, Romaniello A, et al. Evidence of a specific spinal pathway for the sense of warmth in humans. J Neurophysiol. 2003, 89(1): 562-570.
[46]   Treede RD, Kief S, H?lzer T, et al. Late somatosensory evoked cerebral potentials in response to cutaneous heat stimuli. Electroencephalogr Clin Neurophysiol. 1988, 70(5): 429-441.
[47]   Bromm B, Treede RD. Human cerebral potentials evoked by CO2 laser stimuli causing pain. Exp Brain Res. 1987, 67(1): 153-162.
[48]   Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Clin Neurophysiol. 2003, 33(6): 279-292.
[49]   Ohara S, Crone NE, Weiss N, et al. Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain. 2004, 110(1/2): 318-328.
[50]   Lenz FA, Rios M, Zirh A, et al. Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol. 1998, 79(4): 2231-2234.
[51]   Lenz FA, Rios M, Chau D, et al. Painful stimuli evoke potentials recorded from the parasylvian cortex in humans. J Neurophysiol. 1998, 80(4): 2077-2088.
[52]   Frot M, Rambaud L, Guénot M, et al. Intracortical recordings of early pain-related CO2-laser evoked potentials in the human second somatosensory (SII) area. Clin Neurophysiol. 1999, 110(1): 133-145.
[53]   Frot M, Mauguière F, Magnin M, et al. Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci. 2008, 28(4): 944-952.
[54]   Frot M, Mauguière F. Dual representation of pain in the operculo-insular cortex in humans. Brain. 2003, 126(Pt 2): 438-450.
[55]   Hu L, Cai MM, Xiao P, et al. Human brain responses to concomitant stimulation of Aδ and C nociceptors. J Neurosci. 2014, 34(34): 11439-11451.
[56]   Jin QQ, Wu GQ, Peng WW, et al. Somatotopic representation of second pain in the primary somatosensory cortex of humans and rodents. J Neurosci. 2018, 38(24): 5538-5550.
[57]   Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res. 2010, 205(1): 1-12.
[58]   García-Larrea L, Peyron R, Laurent B, et al. Association and dissociation between laser-evoked potentials and pain perception. Neuroreport. 1997, 8(17): 3785-3789.
[59]   Arendt-Nielsen L. Characteristics, detection, and modulation of laser-evoked vertex potentials. Acta Anaesthesiol Scand Suppl. 1994, 101: 7-44.
[60]   Beydoun A, Morrow TJ, Shen JF, et al. Variability of laser-evoked potentials: attention, arousal and lateralized differences. Electroencephalogr Clin Neurophysiol. 1993, 88(3): 173-181.
[61]   Bromm B, Treede RD. Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev Neurol (Paris). 1991, 147(10): 625-643.
[62]   Kakigi R, Shibasaki H, Ikeda A. Pain-related somatosensory evoked potentials following CO2 laser stimulation in man. Electroencephalogr Clin Neurophysiol. 1989, 74(2): 139-146.
[63]   Coghill RC, Sang CN, Maisog JM, et al. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol. 1999, 82(4): 1934-1943.
[64]   Su Q, Qin W, Yang QQ, et al. Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli. Neuroimage. 2019, 192: 52-65.
[65]   Iannetti GD, Zambreanu L, Cruccu G, et al. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience. 2005, 131(1): 199-208.
[66]   Isnard J, Magnin M, Jung J, et al. Does the insula tell our brain that we are in pain? Pain. 2011, 152(4): 946-951.
[67]   Ostrowsky K, Magnin M, Ryvlin P, et al. Representation of pain and somatic sensation in the human Insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex. 2002, 12(4): 376-385.
[68]   Hofbauer RK, Rainville P, Duncan GH, et al. Cortical representation of the sensory dimension of pain. J Neurophysiol. 2001, 86(1): 402-411.
[69]   Rainville P, Duncan GH, Price DD, et al. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997, 277(5328): 968-971.
[70]   Eisenberger NI, Lieberman MD, Williams KD. Does rejection hurt? An fMRI study of social exclusion. Science. 2003, 302(5643): 290-292.
[71]   Kross E, Berman MG, Mischel W, et al. Social rejection shares somatosensory representations with physical pain. Proc Natl Acad Sci USA. 2011, 108(15): 6270- 6275.
[72]   Mouraux A, Diukova A, Lee MC, et al. A multisensory investigation of the functional significance of the "pain matrix". Neuroimage. 2011, 54(3): 2237-2249.
[73]   Mouraux A, Iannetti GD. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol. 2009, 101(6): 3258- 3269.
[74]   Salomons TV, Iannetti GD, Liang M, et al. The "pain matrix" in pain-free individuals. JAMA Neurol. 2016, 73(6): 755-756.
[75]   Liberati G, Kl?cker A, Safronova MM, et al. Nociceptive local field potentials recorded from the human Insula are not specific for nociception. PLoS Biol. 2016, 14(1): e1002345.
[76]   Ronga I, Valentini E, Mouraux A, et al. Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty. J Neurophysiol. 2013, 109(3): 692-701.
[77]   Valentini E, Torta DM, Mouraux A, et al. Dishabituation of laser-evoked EEG responses: dissecting the effect of certain and uncertain changes in stimulus modality. J Cogn Neurosci. 2011, 23(10): 2822-2837.
[78]   Wang AL, Mouraux A, Liang M, et al. Stimulus novelty, and not neural refractoriness, explains the repetition suppression of laser-evoked potentials. J Neurophysiol. 2010, 104(4): 2116-2124.
[79]   Wang AL, Mouraux A, Liang M, et al. The enhancement of the N1 wave elicited by sensory stimuli presented at very short inter-stimulus intervals is a general feature across sensory systems. PLoS One. 2008, 3(12): e3929.
[80]   Iannetti GD, Hughes NP, Lee MC, et al. Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol. 2008, 100(2): 815-828.
[81]   Mancini F, Pepe A, Bernacchia A, et al. Characterizing the short-term habituation of event-related evoked potentials. eNeuro. 2018, 5(5): ENEURO.0014- 18.2018.
[82]   Yantis S. The neural basis of selective attention: cortical sources and targets of attentional modulation. Curr Dir Psychol Sci. 2008, 17(2): 86-90.
[83]   Knudsen EI. Fundamental components of attention. Annu Rev Neurosci. 2007, 30: 57-78.
[84]   Fecteau JH, Munoz DP. Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci. 2006, 10(8): 382-390.
[85]   Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci. 2001, 2(3): 194-203.
[86]   Liang M, Su Q, Mouraux A, et al. Spatial patterns of brain activity preferentially reflecting transient pain and stimulus intensity. Cereb Cortex. 2019, 29(5): 2211-2227.
[87]   Horing B, Sprenger C, Büchel C. The parietal operculum preferentially encodes heat pain and not salience. PLoS Biol. 2019, 17(8): e3000205.
[88]   Liang M, Mouraux A, Iannetti GD. Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. J Neurosci. 2011, 31(24): 8976-8985.
[89]   Zhang ZG, Hu L, Hung YS, et al. Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. J Neurosci. 2012, 32(22): 7429-7438.
[90]   Liberati G, Kl?cker A, Algoet M, et al. Gamma-band oscillations preferential for nociception can be recorded in the human Insula. Cereb Cortex. 2018, 28(10): 3650-3664.
[91]   Liberati G, Algoet M, Kl?cker A, et al. Habituation of phase-locked local field potentials and gamma-band oscillations recorded from the human insula. Sci Rep. 2018, 8(1): 8265.
[92]   Hu L, Iannetti GD. Neural indicators of perceptual variability of pain across species. Proc Natl Acad Sci USA. 2019, 116(5): 1782-1791.
[93]   Liang M, Mouraux A, Hu L, et al. Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nat Commun. 2013, 4: 1979.
[94]   Woo CW, Chang LJ, Lindquist MA, et al. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017, 20(3): 365-377.
[95]   Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content with pattern-information fMRI—an introductory guide. Soc Cogn Affect Neurosci. 2009, 4(1): 101-109.
[96]   Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage. 2009, 45(1 ): S199-S209.
[97]   Wager TD, Atlas LY, Lindquist MA, et al. An fMRI- based neurologic signature of physical pain. N Engl J Med. 2013, 368(15): 1388-1397.
[98]   Woo CW, Koban L, Kross E, et al. Separate neural representations for physical pain and social rejection. Nat Commun. 2014, 5: 5380.
[99]   Chang LJ, Gianaros PJ, Manuck SB, et al. A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol. 2015, 13(6): e1002180.
[100]   Krishnan A, Woo CW, Chang LJ, et al. Somatic and vicarious pain are represented by dissociable multivariate brain patterns. Elife. 2016, 5: e15166.
[101]   Hu L, Iannetti GD. Painful issues in pain prediction. Trends Neurosci. 2016, 39(4): 212-220.
[102]   Woo CW, Schmidt L, Krishnan A, et al. Quantifying cerebral contributions to pain beyond nociception. Nat Commun. 2017, 8: 14211.
[103]   Schulz E, Zherdin A, Tiemann L, et al. Decoding an individual’s sensitivity to pain from the multivariate analysis of EEG data. Cereb Cortex. 2012, 22(5): 1118-1123.
[104]   Kucyi A, Davis KD. The neural code for pain: from single-cell electrophysiology to the dynamic pain connectome. Neuroscientist. 2017, 23(4): 397-414.
[1] Karen M. von Deneen, Ling Zhao, Jixin Liu. Individual differences of maladaptive brain changes in migraine and their relationship with differential effectiveness of treatments[J]. Brain Science Advances, 2019, 5(4): 239-255.
[2] Yuan Yang, Suhua Miao, Rongsong Zhou, Yu Ma, Yuqi Zhang. The development of visual neuroimaging research of acupuncture in the treatment of Parkinson’s disease[J]. Brain Science Advances, 2019, 5(3): 161-168.
[3] Juan Fan, Ronald Milosevic, Jiefei Li, Jianjun Bai, Yuqi Zhang. The impact of neuroimaging advancement on neurocognitive evaluation in pediatric brain tumor survivors: A review[J]. Brain Science Advances, 2019, 5(2): 117-127.